


Q	uesti	on	Answer	Mark	Guidance
1	(a)	(i)		3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			$HO-\dot{c}-\dot{c}-\dot{c}'$ H NH_2 ONa		ALLOW —O [−] Na ⁺ OR —O [−] (cation not required)
			\sim		DO NOT ALLOW —O—Na (covalent bond)
					DO NOT ALLOW –O (without the sodium)
					ALLOW delocalised carboxylate
			HO $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$ $-C$		
			NH_3^+ in second product \checkmark		
		(ii)	perfume/fragrance/flavouring	1	IGNORE solvent OR food additive
		(iii)	Reaction 3: (hot) ethanolic ammonia	3	ALLOW NH₃ (dissolved) in ethanol
					IGNORE other conditions
			Reaction 4: oxidation ✓		ALLOW oxidisation/oxidised DO NOT ALLOW redox
			Reaction 5: hydrolysis ✓		ALLOW nucleophilic addition-elimination
					DO NOT ALLOW nucleophilic substitution
					IGNORE acid/base

Q	uesti	on	Answer	Mark	Guidance
	(d)	(i)	Ester AND amide ✓	1	ALLOW peptide for amide
		(ii)	0 0	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					Functional groups do not need to be fully displayed
			HO $C \rightarrow C$		ALLOW structures as shown; the O-H bond and the N-H bonds in the functional groups do not need to be displayed
					DO NOT ALLOW -COOH
			CH ₃ 		ALLOW
			$H_2N \longrightarrow CH_2OH$ $H_3 \qquad \checkmark$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
					Penalise incorrect connectivity to OH once in this question
		(iii)	(The molecule/amide/ester) can be <u>hydrolysed</u> ✓	1	ALLOW (the molecule/amide/ester) can form hydrogen/H- bonds <u>with water</u> IGNORE acid/base
			Tota	I 20	

Q	Question		Answer		Mark	Guidance
2	(a)	(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW peptide chains
	(a)	(ii)	alanine at pH 6.0 H O H O H O H O C $-C$ C $-C$ H O C H_3 H O H O	~	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + charge on N or H: <i>i.e.</i> ⁺ NH ₃ or NH ₃ ⁺ DO NOT ALLOW ' ' charge on C <i>i.e.</i> ⁻ COO DO NOT ALLOW if structure is incomplete

Question	Answer	Mark	Guidance
(a) (iii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			IGNORE bond angles
	i i i i i i i i i i i i i i i i i i i		DO NOT ALLOW more than one repeat unit
	OR		ALLOW end bonds shown as
			DO NOT ALLOW if structure has no end bonds
	N		IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain
			IGNORE n

Questic	on		Answer		Mark	Guidance
(b)		¹ H N	MR spectrum for s	serine	2	ALLOW $δ$ values ± 0.2 ppm, as a range or a value within the range
		chemical shift, δ /ppm	relative peak area	splitting pattern		ALLOW a response that implies a splitting into three for a
		2.0 to 3.0	1	triplet	triplet/into two for a doublet	
		3.3 to 4.2	2	doublet		
		One mark for each o	correct row	$\checkmark\checkmark$		
(c)	(i)) к рон	1	ALL correct for one mark
(c)	(ii)	any two from: no/fewer side effects increases the (pharr Reduces/stops the r	nacological) activi	•	2	IGNORE toxic/harmful IGNORE a response that implies a reduced dose IGNORE "it takes (less) time to separate"
		stereoisomers/optic		√√		

Question	Answer	Mark	Guidance
(c) (iii)	✓OH ✓ one mark for ethanol	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			ALLOW + charge on H of NH ₂ groups, <i>i.e.</i> NH_2^+
	H ₂ N (+)		IGNORE negative (counter) ions
	COOH ✓ one mark for proline with NH OR NH₂ ⁺		
	HO O O O O O O O O O O O O O O O O O O		
	✓ one mark for remaining fragment		
	 ✓ Fourth mark for structure of both ions shown correctly with NH₂⁺ 		
(c) (iv)	idea of separating (the components/compounds)	1	ALLOW (identifies compounds) using fragmentation
	AND idea of (identifying compounds by) comparison with a (spectral) database \checkmark		(patterns)/fragment ions (but IGNORE molecular ions) IGNORE retention times
	Total	15	

Q	Question		Answer	Marks	Guidance
3	(a)	(i)	monomers join/bond/add/react/form polymer/form chain AND another product/small molecule <i>e.g.</i> H ₂ O/HC <i>l</i> ✓	1	IGNORE 'two' when referring to monomers, <i>i.e.</i> (two) monomers
		(ii)	$\begin{array}{cccccccc} H & O & H & O \\ H_2 N - C - C & $	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW zwitterions
		(iii)	The pH at which the zwitterion exists \checkmark $H_{3}N - C - C$ $H_{3}O = \sqrt{2}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW pH at which there is no overall/net charge IGNORE pH at which there is no charge/ neutral charge <i>ie overall/net is required</i> ALLOW pH at which contains COO ⁻ AND NH ₃ ⁺
	(b)	(i)	Adsorption ✓	1	DO NOT ALLOW absorption ALLOW partition ALLOW adsorbtion
		(ii)	$R_{\rm f} = 0.53$ to 0.62 \checkmark Amino acid is <u>methionine</u> \checkmark	2	Values vary if distance measured to middle or top of spot Independent marks. No need to show working as question asks for estimate of R_f

Question	Answer	Marks	Guidance
(c)	amide link \checkmark correct structure \checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 'terminal' —NH— at other end 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and/or <i>n</i> DO NOT ALLOW aromatic rings in amine residue ALLOW CONH for amide link
(d) (i)	$HO \longrightarrow OH \checkmark$	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous For dicarboxylic acid: ALLOW dioyl chloride
(ii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
	Total	13	

Q	uesti	on	er	Marks	Guidance
4	(a)	(photodegradable OR light/sunlight/UV ✓	1	IGNORE IR/heat IGNORE bacteria DO NOT ALLOW burn/combustion
		(ii)	но он и	1	DO NOT ALLOW structure with any C shown (especially as part of C=O) DO NOT ALLOW OH—
	(b)	(ammonia/NH₃ AND ethanol OR ethanolic ammonia ✓	1	 ALLOW ammonia in a sealed tube IGNORE heat ALLOW dilute ethanolic ammonia /NH₃ DO NOT ALLOW any reference to water or hydroxide ions, e.g. DO NOT ALLOW dilute ethanolic NH₃(aq) e.g. DO NOT ALLOW ethanolic NH₃ + NaOH
		(ii)	Nitrogen electron pair/lone pair accepts a proton/H ⁺ ✓ Requires position of electron pair on N Cl ⁻ H ₃ N ⁺ (CH ₂) ₄ N ⁺ H ₃ Cl ⁻ OR ClH ₃ N(CH ₂) ₄ NH ₃ Cl ✓	2	 DO NOT ALLOW Nitrogen/N lone pair accepts hydrogen proton/H⁺ required ALLOW nitrogen donates an electron pair IGNORE NH₂ group donates electron pair ALLOW + charge (if shown) on N or H of NH₃ e.g. CI⁻H₃N⁺(CH₂)₄NH₃⁺CI⁻ DO NOT ALLOW just H₃N⁺(CH₂)₄NH₃⁺ i.e. 2 x CI⁻ MUST be included

Question	er	Marks	Guidance
Question (iii)	er 1 mark for amide/peptide link correctly displayed within an attempted repeat unit \checkmark 1 mark for rest of structure correct including side links \checkmark \square	2	Guidance Minimum requirement is each end of a displayed amide group attached to a carbon atom (could be skeletal) Brackets not required IF more than one repeat unit has been drawn a single repeat unit MUST be identified by brackets or clear label DO NOT ALLOW 2nd mark if amide/peptide link wrong 1st mark requires amide group fully displayed For 2nd mark, ALLOW –CONH– in correct structure ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous e.

Question	er	Marks	Guidance
(c) (i)	One mark for each correct structure $ \begin{array}{c} & & \\ H_{3}N - CH - C - O^{-} \\ & \\ H_{3}N - CH - C - O^{-} \\ & \\ H_{3}N - CH - C - O^{-} \\ & \\ H_{2}N - C - O^{-} \\ & \\ H_{2}$	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW COO ⁻ '' charge must be on O of COO ⁻ but ALLOW + sign shown as ⁺ NH ₃ OR NH ₃ ⁺ BUT only one NH ₂ can be protonated in zwitterion
(ii)	Zwitterion at pH 9.60/higher pH has one NH ₂ group OR Zwitterion OR amino acid at pH 9.60/higher pH has a side chain with an NH ₂ group ✓ Note: ASSUME that 'it' refers to zwitterion	1	ALLOW amino acid at 9.60/higher pH has two NH ₂ groups ALLOW amino acid at 9.60/higher pH has more NH ₂ groups ALLOW amine OR amino for NH ₂ IGNORE CHOH slightly acidic
	Total	10	